Sensitivity analysis using Itô-Malliavin calculus and application to stochastic optimal control

نویسنده

  • EMMANUEL GOBET
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stochastic maximum principle via Malliavin calculus

This paper considers a controlled Itô-Lévy process the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly nonMarkovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explic...

متن کامل

Stochastic Analysis of the Fractional Brownian Motion

Since the fractional Brownian motion is not a semi–martingale, the usual Ito calculus cannot be used to define a full stochastic calculus. However, in this work, we obtain the Itô formula, the Itô–Clark representation formula and the Girsanov theorem for the functionals of a fractional Brownian motion using the stochastic calculus of variations.

متن کامل

An Anticipative Stochastic Calculus Approach to Pricing in Markets Driven by Lévy Process

We use the Itô-Ventzell formula for forward integrals and Malliavin calculus to study the stochastic control problem associated to utility indifference pricing in a market driven by Lévy processes. This approach allows us to consider general possibly non-Markovian systems, general utility functions and possibly partial information based portfolios. In the special case of the exponential utility...

متن کامل

The Euler scheme for a class of anticipating stochastic differential equations

Using the techniques of the Malliavin calculus and standard Itô calculus methods, we give an Euler scheme to approximate the solution of a class of anticipating stochastic differential equations.

متن کامل

Malliavin Calculus Applied to Optimal Control of Stochastic Partial Differential Equations with Jumps

In this paper we employ Malliavin calculus to derive a general stochastic maximum principle for stochastic partial differential equations with jumps under partial information. We apply this result to solve an optimal harvesting problem in the presence of partial information. Another application pertains to portfolio optimization under partial observation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002